ВВЕДЕНИЕ
Высшая арифметика, или теория чисел, изучает свойства натуральных чисел 1, 2, 3. Эти числа интересуют человека с давних времен. Античные летописи говорят о том, что уже тогда арифметику знали глубже и шире, чем это было необходимо для нужд повседневной жизни. Но систематической, самостоятельной наукой высшая арифметика становится лишь в новое время, начиная с открытий Ферма (Fermat, 1601- 1665).
Многие простые и общие теоремы высшей арифметики естественно возникают из вычислений, однако при доказательстве этих теорем часто встречаются очень большие трудности. «Эта особенность, - по словам Гаусса, - вместе с неистощимым богатством высшей арифметики, которым она столь сильно превосходит другие области математики, придает высшей арифметике неотразимое очарование, сделавшее ее любимой наукой величайших математиков».
Теория чисел считается обычно «чистейшей» ветвью чистой математики. ...........................................................
1. ИСТОРИЯ ВОЗНИКНОВЕНИЯ И РАЗВИТИЯ НАТУРАЛЬНЫХ ЧИСЕЛ
Считается, что термин «натуральное число» впервые применил римский государственный деятель, философ, автор трудов по математике и теории музыки Боэций (480 – 524 гг.), но еще греческий математик Никомах из Геразы говорил о натуральном, то есть природном ряде чисел.
Понятием «натуральное число» в современном его понимании последовательно пользовался выдающийся французский математик, философ-просветитель Даламбер (1717-1783 гг.).
Первоначальные представления о числе появились в эпоху каменного века, при переходе от простого собирания пищи к ее активному производству, примерно 100 веков до н. э. Числовые термины тяжело зарождались и медленно входили в употребление. Древнему человеку было далеко до абстрактного мышления, хватило того, что он придумал числа: «один» и «два». Остальные количества для него оставались неопределенными и объединялись в понятии «много».
.............................................
ЛИТЕРАТУРА
1. Боревич З.И. и др. Теория чисел, -М.: Наука, 1072.
2. Ван-дер-Варден Б.Л. Пробуждающаяся наука. Математика Древнего Египта, Вавилона и Греции. -М., 1959.
3. Виноградов И.М. Основы теории чисел, -М.: Наука, 1972.
4. Выгодский М.Я. Справочник по элементарной математике. - М., 1962.
5. Галочкин А.И. и др. Введение в теорию чисел, -М.: МГУ, 1984.
6. Девенпорт Г. Высшая арифметика. Введение в теорию чисел. -М., 1976.
.............................................