Введение:
Изучение в курсе математики начальной школы величин и их измерений имеет большое значение в плане развития младших школьников. Это обусловлено тем, что через понятие величины описываются реальные свойства предметов и явлений, происходит познание окружающей действительности; знакомство с зависимостями между величинами помогает создать у детей целостные представления об окружающем мире; изучение процесса измерения величин способствует приобретению практических умений и навыков, необходимых человеку в его повседневной деятельности. Кроме того знания и умения, связанные с величинами и полученные в начальной школе, являются основой для дальнейшего изучения математики.
По традиционной программе в конце третьего (четвёртого) класса дети должны:
-- знать таблицы единиц величин, принятые обозначения этих единиц и уметь применять эти знания в практике измерения и при решении задач,
-- знать взаимосвязь между такими величинами, как цена, количество, стоимость товара; скорость, время, расстояние,
-- уметь применять эти знания к решению текстовых задач,
-- уметь вычислять периметр и площадь прямоугольника (квадрата).
Однако, результат обучения показывает, что дети недостаточно усваивают материал, связанный с величинами: не различают величину и единицу величины, допускают ошибки при сравнении величин, выраженных в единицах двух наименований, плохо овладевают измерительными навыками. Это связано с организацией изучения данной
темы. В учебниках по традиционной программе недостаточно заданий, направленных на: выяснение и уточнение имеющихся у школьников представлений об изучаемой величине, сравнение однородных величин, формирование измерительных умений и навыков, сложение и вычитание величин, выраженных в единицах разных наименований.
Глава 2:
Проводится аналогично упражнению № 3 при введении понятия «площадь», т.е. детям предлагается измерить объём куба двумя мерками: моделью кубического сантиметра и моделью кубического дециметра. Объём предложенного куба 20 кубических сантиметров. Дети выясняют, что новой меркой пользоваться быстрее и удобнее. Далее вводится название и выясняется, что в одном кубическом дециметре десять кубических сантиметров.
Для того, чтобы дети различали два понятия, необходимо давать логические задачи, например, что тяжелее тонна пуха или тонна чугуна и др.
Описанные выше ситуации отвечают практически всем дидактическим принципам:
- научности: наряду с практической деятельностью учащихся на уроке преобладает теоретические знания;
- обучения быстрым темпом: благодаря лучшей усваимости материала увеличивается и темп его подачи;
- связи педагогического процесса с жизнью: ознакомление учащихся с величинами происходит с опорой на имеющийся у них жизненный опыт в результате их практической деятельности с предметами. Здесь прослеживается связь математики с жизнью;
- наглядности: уделяется большое внимание наглядности:
модели мерок, фигуры вырезанные из бумаги, таблицы. Многие наглядные материалы дети изготовляют сами или с помощью учителя.
В процессе выполнения подобных заданий происходит развитие учащихся. Оно во многом зависит от той деятельности, которую дети выполняют в процессе обучения. Эта деятельность может быть репродуктивной и продуктивной. Они тесно связаны между собой, но в зависимости от того, какой вид преобладает, обучение оказывает различное влияние на развитие детей. Репродуктивная деятельность характеризуется тем, что ученик получает готовую информацию, воспринимает ее, понимает, запоминает, а затем воспроизводит. Основная цель такой деятельности - формирование у школьников знаний, умений и навыков, развитие внимания и памяти.
Продуктивная деятельность связана с активной работой мышления и находит своё выражение в таких мыслительных операциях, как анализ и синтез, сравнение, классификация, аналогия, обобщение. Эти мыслительные операции принято называть логическими приёмами мышления или приёмами умственных действий.
Включение этих операций в процесс усвоения математического материала - одно из важных условий построения развивающего обучения. Постановка проблемных ситуаций на уроках математики в начальной школе является хорошей основой для формирования и развития логических приёмов мышления.
Заключение:
В процессе написания работы была проанализирована психолого- педагогическая и методическая литература по теме «Величины» и их измерения . Изучая основы развивающего обучения, было установлено, что:в ходе развивающего обучения используются различные упражнения, задачи, вопросы, задания, развивающее обучение имеет свою структуру, а так же способы её организации, подготовка урока при развивающем обучении тоже имеет свою структуру.
Так как развивающее обучение это дидактическая система, то только знания теоретических основ развивающего обучения сможет помочь учителю в его организации. Анализ методической литературы по вопросу использования проблемных ситуаций на уроках математики показал что:
развивающее обучение возможно на уроках математики, применение развивающего обучения возможно при изучении некоторых вопросов курса математики, разработаны развивающие упражнения, используемые на уроках математики, по теме «Величина и её измерение», при обучении возможны индивидуальная, коллективная и групповая формы работы учащихся. Было установлено, что изучение темы «Величина и её измерение» в начальных классах возможно с использованием развивающих упражнений.
. Была подобрана и составлена система упражнений развивающего характера.