Введение:
В курсе математики начальных классов текстовые задачи выступают, с одной стороны, как объект изучения, усвоения, формирования определенных умений, с другой стороны, текстовые задачи являются одним из средств формирования математических понятий. Задачи выполняют функцию связующего звена между теорией и практикой обучения, способствуют развитию мышления учащихся, вырабатывают практические навыки применения математики, являются основным средством развития пространственного воображения, а также эвристического и творческого начал.
Решение задач имеет чрезвычайно важное значение, прежде всего для формирования у детей полноценных знаний, определяемых программой, также формирует практические умения и вычислительные навыки, необходимые человеку в повседневной жизни.
Учащиеся нередко не умеют выделить искомые и данные, установить связь между величинами, входящими в составную задачу; составить план решения; выполнить проверку полученного результата. Необоснованно много внимания и не оправданных затрат времени идет на оформление краткой записи и решения задачи. При этом основное внимание направлено на реализацию единственной цели - получение ответа на вопрос задачи. Так же в курсе математики в начальной школе масса времени посвящается вычислению уже по готовым математическим моделям, то есть по знакомому описанию, какого либо явления с помощью математической символики. Все это отрицательно сказывается на формировании общих умений решать задачу, и не оказывают необходимое влияние на развитие мышления учащихся.
Глава 2:
Включают две переменные и одну или несколько постоянных величин, причем даны два значения одной переменной и разность соответствующих значений другой переменной, а сами значения этой переменной являются искомыми. [1;с. 233.]
По отношению к каждой тройке величин, находящихся в пропорциональной зависимости, можно выделить шесть видов задач на нахождение неизвестных по двум разностям. Однако в начальных классах ограничиваются рассмотрением двух следующих видов задач (см.приложение5)
Сначала рассматриваются задачи I вида, а затем II. Эти задачи решаются только способом нахождения значения постоянной величины.
До ознакомления с решением задач на нахождение неизвестных по двум разностям важно предусмотреть специальные подготовительные упражнения, с помощью которых раскрывается основная проблема задачи.
В качестве п о д г о т о в и т е л ь н ы х у п р а ж н е н и й к введению задач этого типа полезно предлагать задачи-вопросы и простые задачи повышенной трудности, которые помогут детям уяснить соответствие между двумя разностями, например:
1) Сестра купила 5 одинаковых тетрадей, а брат 8 таких же тетрадей. Кто из них больше уплатил денег? Почему? За сколько тетрадей брат уплатил столько же денег, сколько уплатила сестра?
2) Брат и сестра купили тетради по одинаковой цене. Брат купил на 3 тетради больше, чем сестра, и уплатил на 9 руб. больше, чем сестра. Сколько стоила одна тетрадь?
Выполняя предметную иллюстрацию, надо показать детям, что брат купил столько же тетрадей, сколько сестра, и еще 9 руб. Отсюда можно заключить, что три тетради стоят 9 руб., значит, можно узнать, сколько стоит одна тетрадь.
Такие упражнения надо включать с различными группами пропорциональных величин.
После подготовительных упражнений можно перейти к ознакомлению с решением задач на нахождение неизвестных по двум разностям. Здесь, как и при ознакомлении с задачами на пропорциональное деление, можно использовать различные пути: можно сначала составить задачу на нахождение неизвестных по двум разностям, преобразовав знакомую задачу на нахождение четвертого пропорционального, а можно сразу предложить готовую задачу. В том и в другом случае надо записать кратко в таблице или выполнить рисунок и после того коллективного составления плана записать решение (лучше отдельными действиями с пояснениями).
Заключение:
В начальном курсе математики текстовым задачам уделяется огромное внимание: практически на каждом уроке школьникам приходится иметь с ними дело. Их можно рассматривать как цель и как средство обучения, т.к. в процессе решения целесообразно подобранных задач у школьников происходит, как формирование умения решать задачи, так и усвоения содержания начального курса математики.
В ходе работы над темой нами была рассмотрена психолого-педагогическая и методическая литература. Проблемой обучения составным задачам в начальных классах занимались такие ученые и методисты, как М.А. Бантова, М.И. Моро, Н.Б. Истоминой. Большое внимание составным задачам уделяли советские педагоги-математики, и методисты Е.С. Березанская, А.С. Пчелко, Я.С. Чекмарев и др.
Рассмотрели методику работы над различными видами составных задач, специфику этого вида учебных упражнений. Обучение решению составных задач в начальных классах строится на умении решать простые задачи, входящие в состав составной. Работа по решению задач должна вестись целенаправленно и систематически.
Рассмотрели роль моделирования в решении составных задач. Неотъемлемой частью решения составной задачи является построение модели, исследование которой служит средством для получения ответа на требование задачи. Чтобы дети легче прослеживали зависимости между величинами, а выбор действия становился для них осознанным и доказательным, необходимо систематически обучать детей моделированию.